

Method Development for the Detection of Exicure's AST-008 in Human Plasma

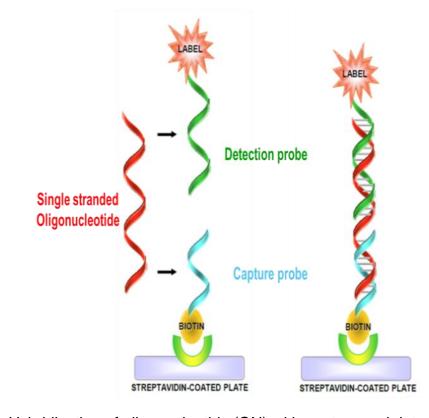
Danielle Salha(1), Aude Carine Ndoti(1), Mira Sassin(1), Alexandra Michaux(1), Djahida Djerir(1), Thu-Bich Vu(1) and Scott Mix(2) (1): Altasciences, Laval, Quebec, Canada (2): Exicure, Skokie, Illinois, United States

Introduction

AST-008 is a novel spherical nucleic acid (SNA) configuration of a toll-like receptor 9 (TLR9) agonist oligonucleotide, designed to trigger innate and adaptive immune responses that are useful in oncology applications. AST-008 activated key immune cells and cytokines predictive for an antitumor effect in a Phase 1 healthy-volunteer study.

A sensitive bioanalytical method was required to determine the concentrations of AST-008 in human plasma with minimal detection of metabolites to pharmacokinetic analysis in clinical studies.

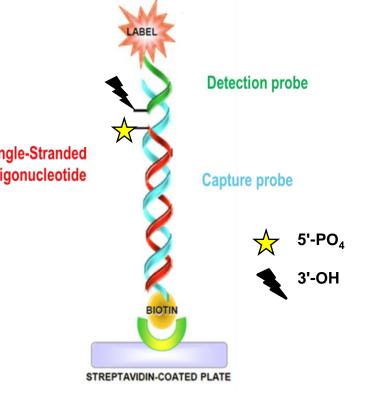
Figure 1: SNA Structure


Objective

The concentrations of AST-008 in clinical samples were initially determined by hybridizing a complementary, fluorescently-labeled peptide nucleic acid (PNA) probe and using liquid chromatography with fluorescence detection (LC-FD). All samples, when analyzed with this method, were below the limit of quantification (BLQ) of 10 ng/mL; therefore, a more sensitive method was required. The objective of this study was to develop a bioanalytical method with greater sensitivity, as determined by the lower limit of quantitation (LLOQ). Two hybridization methods (Dual Hybridization and Hybridization-Ligation) and two platforms (Fluorescence and ECL) were compared in order to select the one with greatest sensitivity and selectivity for further validation.

Table 1: Advantages and Limitations of Hybridization Methods

Method	Advantages	Limitations		
Hybridization ELISA	No sample clean up (plasma) or minimum sample cleanup (tissue)	Narrower calibration range than chromatographic methods (10- to 50-fold)		
	Low reagent costs			
	Very high sensitivity, precision and accuracy			
	Highly selective of parent	Quantitation of parent / total detectab oligonucleotide metabolites (shortmer not quantifiable in parent assay		
	Widely used to support preclinical and clinical studies			
	High target specificity			


Figure 2: Dual Hybridization ELISA

Hybridization of oligonucleotide (ON) with capture and detection

Efler, SM et al.(2005) Oligonucleotides, 15 (2) 119–131

Figure 3: Hybridization-Ligation Fluorescence

- igation of ON with T4 polynucleotide kinase (PNK) and DNA
- - Yu RZ et al.(2002) Anal. Biochem. 304, 19-25

Results

Table 2: Sensitivity of LC-FD versus Dual Hybridization Methods

	Dual Hybridization	LC-FD
LLOQ (Plasma)	1.000 ng/mL	10.00 ng/mL

· The Dual Hybridization method was evaluated first using the fluorescence platform and although the LLOQ was lower than the LC-FD method, higher sensitivity was pursued utilizing additional hybridization methods and platforms.

Table 3: Metabolite Cross-Reactivity with Hybridization-Ligation and Dual Hybridization

		Hybridization-Ligation ECL Method		Dual Hybridizati	ion ECL Method		
Nominal Metabolite Concentration (ng/mL)		105.0					
_		Metabolit	te Identity	Metabolite Identity			
	Run ID	N-1 AST-008	N-2 AST-008	N-1 AST-008	N-2 AST-008		
Observed Concentration	EXI557.33	7.401	6.573	118.4	104.3		
	EXI557.10	7.470	6.493	123.8	95.86		
N		2	2	2	2		
Mean		7.436	6.533	121.1	100.1		
Cross-Reactivity (%)		7.1	6.2	115.3	95.3		

 $\%Cross - Reactivity = (Mean observed concentration) \div (Nominal metabolite concentration) \times 100$

 The hybridization-ligation ECL method had a minimal cross-reactivity with N-1 or N-2 metabolites, whereas the dual hybridization ECL method detected 100% of both metabolites.

Table 4: Hybridization-Ligation ECL Method Precision and Accuracy

Nominal concentration	LQCA	LQCB	QC1A	QC1B	QC2	QC3	ULQ
(ng/mL)	0.5000	1.000	1.500	3.000	30.00	105.0	150.0
	0.5110	1.009	1.587	3.186	29.08	111.8	158.4
D ID	0.5066	1.020	1.527	3.174	33.23	113.0	164.3
Run ID EXI557.36	0.5293	1.018	1.450	3.039	30.97	114.5	172.4
EX1337.30	0.5343	1.048	1.477	2.926	30.60	115.8	175.4
	0.5519	1.016	1.471	3.075	34.46	125.4	181.0
N	5	5	5	5	5	5	5
Mean	0.5266	1.022	1.502	3.080	31.67	116.1	170.3
SD	0.0183	0.0151	0.0551	0.1065	2.153	5.399	8.979
%CV	3.5	1.5	3.7	3.5	6.8	4.7	5.3
%RE	-5.3	2.2	0.2	2.7	5.6	10.6	13.5

• The hybridization-ligation ECL method exhibited acceptable precision and accuracy (%CV ≤ 20% and %RE \pm 20%) indicating a sensitivity of 0.5000 ng/mL.

Table 5: Hybridization-Ligation ECL Method Matrix Effect Selectivity

Nomin	nal	Blank	LQC	CA	LQC	В	QC	3
Concentration (ng/mL)		0.0000	0.0000 0.5000		1.000		105.0	
Run ID	Lot #	AST-008	AST-008	% RE	AST-008	% RE	AST-008	% RE
EXI557.33	1	BLQ	0.4553	-8.9	0.8991	-10.1	101.2	-3.6
EXI557.41	2	BLQ	0.5232	4.6	1.0490	4.9	114.6	9.2
	3	BLQ	0.3786	-24.3	0.8248	-17.5	93.77	-10.7
	4	BLQ	0.3275	-34.5	0.6893	-31.1	82.11	-21.8
	5	BLQ	0.4091	-18.2	0.8099	-19.0	90.14	-14.2
	6	BLQ	0.4202	-16.0	0.8099	-19.0	96.62	-8.0
	7	BLQ	0.5327	6.5	0.9983	-0.2	116.9	11.3
	8	BLQ	0.4987	-0.3	0.9983	-0.2	115.9	10.4
	9	BLQ	0.4710	-5.8	0.8746	-12.5	102.7	-2.2
	10	BLQ	0.4631	-7.4	0.9237	-7.6	105.1	0.1
	Mean	BLQ	0.4479	-10.4	0.8877	-11.2	101.9	-2.9

• The hybridization-ligation ECL method exhibited acceptable selectivity (≥8 of 10 lots with %RE ± 20%) at the 0.5000 ng/mL and 105.0 ng/mL levels.

Table 6: Hybridization-Ligation ECL Method Dilution Linearity

Nominal concentration (ng/mL) Dilution factor Concentration after dilution (ng/mL)				
		1:200	1:500	1:5000
		100.0	40.00	4.000
	Observed	22163	24146	21408
Run ID EXI557.38	Observed concentration (ng/mL)	20399	18413	18245
		20175	18966	18305
		20616	19912	18494
	N	4	4	4
Mean SD %CV %RE		20838	20359	19113
		901.4	2599	1533
		4.3	12.8	8.0
		4.2	1.8	-4.4

• Sample dilution was found to be acceptable (%CV ≤ 20% and %Nominal ± 20%) up to 5000 fold using the hybridization-ligation ECL method.

Table 7: Validation Summary for the Determination of AST-008 in Human Plasma Using the **Hybridization-Ligation ECL Method**

Short description of method	Hybridization-Ligation ECL				
Biological matrix	Human Plasma (K ₂ EDTA)				
Analyte	AST-008				
Calibration concentrations	0.5000 to 150.0 ng/mL				
Sensitivity	0.5000 ng/mL (LOQ QC)				
Lower limit of quantification	LLOQ (ng/mL)	0.5000			
	Between-run accuracy	99%			
	Between-run precision	12%			
	Within-run accuracy	95%			
	Within-run precision	2%			
Between-run accuracy	91% to 99%				
Between-run precision	4% to 12%				
Within-run accuracy	90% to 95%				
Within-run precision	1% to 5%				
Matrix effect	No significant interference was observed in 9 out of 10 individual human plasma lots: acceptance criteria were met at all tested levels (Blank [un-spiked], LOQ QC and QC3). Acceptance criteria were met at all tested levels (Blank [unspiked], LOQ QC and QC3) in hemolyzed (up to 2%) human plasma and lipemic (>300 mg/dL triglycerides) human plasma.				
Metabolite cross-reactivity	Minimal cross-reactivity observed for N-1_AST-008 (4%) and N-2_AST-008 (1%) at QC3 level (105.0 ng/mL).				
Metabolite interference	No effect on the determination of AST-008 in human plasma tested at QC1 and QC3 levels in the presence of either metabolite N-1 AST-008 or N-2 AST-008.				
Hook effect	No hook effect observed up to 20000 ng/mL.				
Dilution linearity	DQC1 at 20000 ng/mL was used for dilution factors of 1/200 and 1/5000, whereas DQC2 at 200.0 ng/mL was used for dilution factor of 1/5.				
		%Nominal	%CV		
	Diluted 5-fold	86%	3%		
	Diluted 200-fold	87%	4%		
	Diluted 5000-fold	95%	3%		
Whole blood stability	Reported up to 2 hours on ice	e/water bath.			
Stock stability at -20 °C Nominal	Reported up to 19 days at -2	0 °C nominal.			
	Extended period will be conducted on a later date.				
Short-term matrix stability at 22 °C Nominal	Reported up to 26.2 hours at ambient room temperature.				
Freeze-thaw matric stability	Reported up to 5 cycles.				
Long-term matrix stability at	Reported up to 11 days.				
-20 °C Nominal	Extended period will be cond	ucted on a later date			

· The hybridization-ligation ECL method is fully validated with respect to accuracy, precision, selectivity (matrix effects, metabolite cross-reactivity and interference), hook effect, dilution linearity and stability.

Conclusions

- ✓ The hybridization-ligation ECL method to measure AST-008 concentrations in human plasma was successfully validated with the range of 0.5000 ng/mL to 150.0 ng/mL
- ✓ This method is 20-fold more sensitive than the PNA probe, LC-FD method that was formerly validated for the same analyte.
- ✓ The level of sensitivity obtained using the hybridization-ligation ECL method enabled the detection of low concentrations of AST-008 in clinical study samples that had previously been undetectable using the PNA probe LC-FD method.

© 2019 Altasciences. All Rights Reserved.