

Surrogate CSF for the Bioanalysis of Oligonucleotide **Therapeutics Through LBA**

Vaibhav Naresh Mehta, Elizabeth Ruiz Lancheros, Danielle Salha Altasciences, Laval, QC, Canada

INTRODUCTION

- Bioanalytical ligand binding assays (LBA) support pharmacokinetic (PK) drug and pharmacodynamic (PD) biomarker profiling for preclinical and clinical studies.
- Per the ICH M10 guidance, LBA for PK bioanalyses requires calibration standards prepared in the same biological matrix as the study samples.
- Additionally, per the ICH M10 guidance, the biological matrices are the recommended diluents for study samples.
- Therefore, each biological matrix lot must be qualified for specificity and selectivity against the analyte, prior to use.
- These requirements pose unique challenges for rare matrices such as cerebrospinal fluid:
- Long lead times for procurement
- Expensive
- Limited volumes per collection lot
- Performance variance between lots
- Requiring robust criteria for qualification, making it further challenging.

SURROGATE CSF

- Compositional analyses indicate a 1000-fold lower protein content in CSF vs. blood-based matrices.
- Table 1 lists the identified composition from a review article.
- ¹Fogh JR et al. Anal Bioanal Chem Glucose (µg/mL) 2020;412:1653-61

To identify a suitable surrogate CSF:

- Dual-probe method for an ASO
- QC samples in native CSF
- Calibration standards in

Native CSF method

- -1% serum in PBS
- -1% BSA in PBS
- Serum supplementation better mimics performance in native CSF

Table 1. Typical composition of CSF and plasma ¹

Figure 1. Serum vs. BSA-supplemented PBS as potential surrogate CSF candidates

CLINICAL APPLICATION

- Original bioanalytical method for an ASO validated using native human CSF and successfully used to support the Phase I clinical study.
- The above-mentioned challenges were observed during a longer-duration Phase II study, primarily through variance in lot-to-lot performance of native CSF.
- Therefore, the feasibility of a surrogate CSF method was explored through preliminary testing as depicted in Figure 1.
- Performance of 1% serum-supplemented PBS demonstrated in precision and accuracy evaluations with native human CSF (Table 2).

Table 2. Calibration standards in surrogate CSF. QC sample sets in surrogate and native CSF.

Precision and Accuracy	Prepared in surrogate CSF (1% serum supplemented PBS)					Prepared in native human CSF					
	LLOQ QC	LQC	MQC	HQC	ULOQ QC	LLOQ QC_CSF	LQC_CSF	MQC_CSF	HQC_CSF	ULOQ QC_CSF	
	0.1500 ng/mL	0.4000 ng/mL	4.000 ng/mL	75.00 ng/mL	100.0 ng/mL	0.1500 ng/mL	0.4000 ng/mL	4.000 ng/mL	75.00 ng/mL	100.0 ng/mL	
Replicate – 1	0.1782	0.3815	4.060	77.74	87.64	0.1542	0.4170	4.033	75.43	89.83	
Replicate – 2	0.1723	0.3997	3.847	72.34	93.74	0.1628	0.4187	4.030	78.26	84.68	
Replicate – 3	0.1733	0.3655	3.833	74.87	87.78	0.1560	0.4032	3.627	71.98	81.95	
Intra-run Mean	0.1746	0.3822	3.913	74.98	89.72	0.1577	0.4130	3.897	75.22	85.49	
Intra-run SD	0.003158	0.01711	0.1272	2.702	3.482	0.004536	0.008501	0.2335	3.145	4.001	
Intra-run %CV	1.8	4.5	3.3	3.6	3.9	2.9	2.1	6.0	4.2	4.7	
Intra-run %Bias	16.4	-4.4	-2.2	0.0	-10.3	5.1	3.2	-2.6	0.3	-14.5	
Intra-run %Total Erro	18.2	8.9	5.4	3.6	14.2	8.0	5.3	8.6	4.5	19.2	
n	3	3	3	3	3	3	3	3	3	3	

Specific workflow used for method cross-validation:

<u>Cross-validation of native CSF and surrogate CSF methods:</u>

Surrogate CSF method

Figure 2. Cross-validation work-flow.

- Cross-validation first performed using QC samples.
- Cross-validation next performed using n≥30 study samples.
- All QC and study samples met acceptance criteria (100%).

PRECLINICAL APPLICATION

- 1% plasma—PBS tested as surrogate CSF, for de novo development.
- Performance demonstrated in precision and accuracy evaluations with native monkey CSF (Table 3).
- Dilutional linearity established with surrogate CSF as diluent for reliable quantitation of preclinical study samples at Cmax (Table 4).

Table 3. Calibration standards in surrogate CSF. QC samples sets in surrogate and native CSF.

Precision and Accuracy	Prepare	d in surrogate	CSF (1% plasr	ma supplement	ed PBS)	Prepared in native monkey CSF					
	LLOQ QC	LQC	MQC	HQC	ULOQ QC	LLOQ QC_CSF	LQC_CSF	MQC_CSF	HQC_CSF	ULOQ QC_CSF	
	40 pg/mL	100 pg/mL	2000 pg/mL	150000 pg/mL	.200000 pg/mL	40 pg/mL	100 pg/mL	2000 pg/mL	150000 pg/mL	200000 pg/mL	
Replicate – 1	41.1	112	1900	164000	200000	34.4	102	2070	163000	200000	
Replicate – 2	36.6	109	2090	175000	193000	34.7	99.1	1990	162000	192000	
Replicate – 3	37.3	109	1960	165000	205000	38.7	106	2220	156000	203000	
Intra-run Mean	38.3	110	1980	168000	199000	35.9	102	2090	160000	198000	
Intra-run SD	2.42	1.73	97.1	6080	6030	2.40	3.46	117	3790	5690	
Intra-run %CV	6.3	1.6	4.9	3.6	3.0	6.7	3.4	5.6	2.4	2.9	
Intra-run %Bias	-4.2	10.0	-1.0	12.0	-0.5	-10.2	2.4	4.5	6.7	-1.0	
Intra-run %Total Error	10.5	11.6	5.9	15.6	3.5	16.8	5.8	10.1	9.0	3.9	
n	3	3	3	3	3	3	3	3	3	3	

lable 4. Diluti	onal lineari	ity of QC san	nple (Cmax) i	n native CSI	- using surro	gate CSF as	diluent.				
Dilution Linearity	Nominal concentration – 5,000,000,000 pg/mL										
	1X	10X	100X	1,000X	10,000X	100,000X	1,000,000X				
	Measured concentration (pg/mL)										
Replicate – 1	>ULOQ	>ULOQ	>ULOQ	>ULOQ	>ULOQ	5150000000	4320000000				
Replicate – 2	>ULOQ	>ULOQ	>ULOQ	>ULOQ	>ULOQ	5260000000	4450000000				
Replicate – 3	>ULOQ	>ULOQ	>ULOQ	>ULOQ	>ULOQ	4640000000	4810000000				
Mean	NA	NA	NA	NA	NA	5020000000	4530000000				
S.D.	NA	NA	NA	NA	NA	331000000	254000000				
n	1	3	3	3	3	3	3				
% CV	NA	NA	NA	NA	NA	6.6	5.6				
% Rias	NΑ	NA	NA	NA	NA	0.4	-9 4				

CONCLUSIONS

- Serum or plasma (at 1% v/v) supplemented PBS mimics native CSF performance in bioanalytical methods for oligonucleotide therapeutics.
- This similarity in performance extends outside the analytical range, as demonstrated with dilution linearity up to 1,000,000-fold.
- The presented clinical study demonstrates the ease of transferring validated native CSF methods to surrogate CSF methods without extensive changes in the methodology.
- Surrogate CSF preparations perform consistently across different lots, enhancing method robustness and reliability.